Google guys come to shake up BI with natural language

Kindergarten may have taught you all you need to know about life. But you may need to watch “Mr. Peabody and His Boy Sherman,” an animated, 1960s-era TV series for kids, to truly appreciate an interesting new natural-language product called ThoughtSpot.

ThoughtSpot’s natural-language querying represents a new stage of maturity for casual BI users — a step up even from visualization, which was a step up from rows and columns. ThoughtSpot users get data with natural language queries, otherwise known as questions.

ThoughtSpot opens with a Google-like interface. In a demo, a search for “total revenue last year” and visualized data appeared quickly with a simple dollar amount and, below it, bar charts with some detail. A followup query asked for a breakdown by age and gender, and a line chart showed the total revenue broken down that way. During what period? The query “last year quarterly” yielded yet more detail.

As in Google, queries type ahead based on past queries by others. And not just any others; the tool learns from the group. “Revenue in California,” for example, will show up first for one group while, say, “Revenue in Caledonia” will show up for another.

Inevitably, I suppose that many business users will try to do more analysis than they’re capable of. I can’t tell how deep ThoughtSpot will take them. But suppose they get into a problem and suppose expert help eventually arrives.

This is where I imagine that Mr. Peabody appears. In the TV cartoon, he was a brilliant, geeky dog, and Sherman was his pet boy. Sherman always had the interesting, pertinent questions. Mr. Peabody had enigmatic answers. “But Mr. Peabody,” Sherman often began, “why did they call it ThoughtSpot?” Mr. Peabody often gave a reply like this: “It’s elementary, my dear Sherman. It’s ‘thought’ for ‘thought’ and ‘spot’ for ‘spot.’ ThoughtSpot!” For me, they offer an allegory with data scientists and their business users.

“How did you get those numbers?,” the Mr. Peabody type might ask. To show him, the ThoughtSpot user hovers the cursor over a search term to reveal the identity of the table and column supplying that data. If that’s not good enough, a little window headed with “What am I looking at?” explains in a sentence.

The two ThoughtSpot representatives who conducted the demo for me proudly told about one such encounter in which the Peabody realized he’d been using incorrect data.

In the old TV cartoon, the dog is always smarter than the smartest human. Peabody and Sherman routinely travel back in time to render help at precisely the moment necessary to let such figures as Albert Einstein discover relativity or to align an apple to fall on Isaac Newton’s head.

If only His Boy Sherman could have sent the WABAC (wayback) Machine forward, instead of backward. Perhaps then he would have found a tool to let his innocent, unfiltered questions iterate toward insight with just natural language.

True, many of the world’s Shermans have already found that tools like Tableau and QlikSense let them iterate through questions and answers. But even such easy to use viz tools still don’t work for many without the patience or self-confidence to learn.

ThoughtSpot, say the two people who showed it to me, connects to just about any source of data, on the cloud or on premises, including Hadoop. It creates its own in-memory relational cache, though it doesn’t create its own aggregations. It makes an index of the data while retaining the original schema, joins, cardinality, etc.

If ThoughtSpot resembles Google, it should. That’s where four of the seven founders came from.

“We’re not a bunch of BI guys trying to bolt search onto BI,” said vice president of marketing Scott Holden. “We’re a bunch of search guys trying to reinvent BI.” They just might do it, even without a Mr. Peabody to swoop down from the future with his helpful paw. ThoughtSpot has that rumble and hiss of an invention about to break through the BI industry’s frontier. It doesn’t seem intended to replace heavy duty data analysis, at least not for now. But it does look like the easiest entry so far — lowering the ramp just enough for critical first steps, and maybe much more.

In fact, possibly the most important implication of the Google-like interface probably seemed too obvious to mention: Using it takes no training. Nearly anyone can do simple data analysis immediately.

Sherman might ask, “But Mr. Peabody, If I can do this, why do I need you?” I’ll bet that the smartest of the Mr. Peabodys would have thought they’d never see the day. Ah, liberation! They might be overjoyed to just fetch the data and to come when called. Natural balance will have been restored.

One Response to Google guys come to shake up BI with natural language

  1. I would disagree that this represents a step up from interactive visualization, Ted. It does add to the toolset. Beyondcore goes a step further by telling the consumer what to investigate.

The data industry thrives on conversation. Please submit a comment.

Other recent posts

Bohemian Grove a la BI

The Bohemian Grove of the BI industry convenes for the fifteenth time in just three weeks. Naturally, you ask the obvious question: Are you serious? The Grove? A summit? The answer begins with a fond recollection of the Grove. If you’ve never attended the Bohemian Grove yourself — I haven’t, though I live in the… Continue Reading

Favorite Star Trek, a data story

This story shows how elemental data stories really are. Humans come ready to tell and hear them, requiring no plug-ins at all. This young person can do a good job of it. There was a question, followed by data, then questions and answers, and and finally a conclusion. It’s all there. It’s elementary. Sure, this… Continue Reading

Bad stories stop good data at the water cooler

We agree by now that data’s a good compass. One neglected question is tougher: Which map? Everyone’s known the kind of “grouchy guy” TDWI instructor Kellee M. Franklin, Ph.D tells about. This guy knew better than most of his co-workers about how their Washington, D.C. defense agency worked. And he was frustrated. Over the years,… Continue Reading